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scoring all trials administered (the usual practice) may not yield the best
obtainable predictive validity. Scoring only a subset of consecutive trials
(early, middle, or late) frequently yields appreciably higher predictive
validities than the conventional practice.

"Subset analysis" serves the same ends in performance-test theory as item
analysis does in conventional psychometrics. Both kinds of analysis concern
the selection of some materials for inclusion in a test and others For
exclusion, either in original development or in subsequent revisior. The
difference is that item analysis focuses on individual items and subset
analysis on subsets of ordered trials.

Serial averaging and its applications (reliability and stability optima,
optimal scoring for predictive validity, and subset analysis) are explained and
illustrated. Results obtained using the Project-A computer-administered tests
serve as the database.

4
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ABSTRACT

The advent of the microcomputer has led to a renaissance in performance

testing, that is, tests which sample what a person can do (remember, track,

aim, detect, recognize, etc.) rather than what he or she knows. Psychometric,

theory, however, is based on knowledge tests. The unit of analysis is an

item and the order of administering the items is arbitrary. IA performance

testing the unit of analysis is a trial and order of administration is not

only nonarbitrary but often the only thing that distinguishes one trial from

another. In a knowledge test it is not unreasonable to suppose that mean

performance and lnteritem correlations are independent of order of

administration. In a performance test it is. Typically, performance

improves with practice and intertrial correlations tend toward a definite

pattern as a function of order.

The consequences of these differences for theory are drastic. In

performance testing, both reliability and temporal stability frequently

encounter optima as a test is lengthened. Hence, low reliability or

stability may not be corrigible by increasing test length. Further,

scoring all trials administered (the usual practice) may not yield the best

obtainable predictive validity. Scoring only a subset of consecutive trials

(early, middle, or late) frequently yields appreciably higher predictive

validities than the conventional practice.

"Subset analysis" serves the same ends in performance-test theory as

item analysis does in conventional psychometrics. Both kinds of analysis

concern the selection of some materials for inclusion in a test and others

for exclusion, either in original development or in subsequent revision. The



www.manaraa.com

2

difference is that item analysis focuses on individual items and subset

analysis on subsets of ordered trials.

Serial averaging and its applications (reliability and stability optima,

optimal scoring for predictive validity, and subset analysis) are explained

and illustrated. Results obtained using the Project-A computer-administered

tests serve as the database.

6
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INTRODUCTION

The theoretical problem of performance testing

The distinction between knowledge and performance testing turns on what

one is trying to measure. A knowledge test samples what a subject knows, a

performance test what he or she can do. Plainly, this distinction is not

absolute. A mathematics test, for example may involve not only what a

subject knows but also what he or she can do with that knowledge. A memory

task may be facilitated if a subject has seen an unusual symbol before and

knows what it is, say, a Greek omega. Nevertheless, most tests fall

lopsidedly into one category or the other.

In a knowledge test tne subject does not usually know whether the answer

that he or she has given is right or wrong. As a result practice effects are

limited to auxiliary aspects of the test (test-taking skills) and, while they

exist, are not large (Messick & Jungblut, 1981; Wing, 1980). In a

performance test, however, it is usually not possible to prevent the subject

from obtaining some idea as to how well or poorly he or she is doing. As a

consequence, subjects tend to do better on a test the more times it is

administered to them (Bittner et al, 1983; Kennedy et al, 1981). In effect,

each test administration becomes a trial of practice.

Psychometric theory is based on knowledge tests. The unit of analysis

is an item and the order of administering the items is arbitrary. In

performance testing, however, the unit of analysis is a trial and order of

administration is not only nonarbitrary but often the only thing that

distinguishes one trial from another. In a knowledge test it is not

unreasonable to suppose that mean performance and interitem correlations are

independent of order of administration. In a performance test it is.

7
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Typically, performance improves with practice, often within a session but

almost always from test to retest; variances follow the means; and intertrial

correlations tend toward a definite pattern as a functton of order, the

superdiagonal form (Jades, 1962).

Ihunakiliailinnanetin
During the Second World War performance testing based on

electromechanical apparatus (rotary pursuit, complex coordination, two-hand

tracking, and the like) was widely and successfully used in military

selection, especially for pilot training (Melton, 1947). The equipment,

however, was heavy, bulky, difficult to maintain, and more difficult to

replace. By the late 1950s all three military services had abandoned

performance testing in favor of paper-and-pencil tests exclusively. Then in

the late 1970s the advent of microcomputers reopened the possibility of

performance testing, this time with equipment that occupied little space, did

not break down frequently, and was easily replaced when it did. At the same

time, experimental psychology was undergoing a revolution of its own, as the

discipline's central focus shifted from learning theory to cognition and

information-processing. The joint effect of these two developments was a new

generation of cognitively oriented, microcomputer-based performance tests

(Englund, Reeves, Shinglebecker, Thorne, Wilson, & Hegge, 1987; Kennedy,

Baltzley, Wilkes, & Koontz, 1989; Kyllonen & Christal, 1989).

Unfortunately, all has not been clear sailing For this new generation of

performance tests. The most serious problem has been that many tests have

low reliabilities (Kyllonen, 1985). Predictive validities against real-world

criteria are still sparse, but it seems likely that oftentimes they will also

be low. An appropriate response to these difficulties involves more than
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making and trying out new tests. What is needed is a theory of performance

tests, that is, an approach to test construction and validation that

recognizes and capitalizes upon the distinctive properties of performance

tests.

Plan of the paper

The present paper develops such a theory. Its empirical base is

provided by the ten computer-administered tests in Project A (Eaton, Hansen,

& Shields, 1987; Peterson, Hough, Dunnette, Rosse, & Wing, 1990). Results

will be presented under seven headings: comparisons with Army data, practice

effects, reliability, temporal stability, sample variations, predictive

validity, and subset analysis.

TASKS, SUBJECTS, PROCEDURES

The Prolect-A tests

Project A is a large, multi-year effort to improve the Armed Forces

Vocational Aptitude Battery (Eaton, Hanser, & Shields, 1985; Peterson, 1987).

Included in this effort are ten newly developed, computer-administered

performance tests. Brief descriptions of the ten tests are given below. The

tests are administered in the order described. Table 1 shows the number of

trials a subject receives on each test and, approximately, the total length

of time each test requires.

Simple Reaction Time. The subject is instructed to place his or her

hands in the ready position. When the word YELLOW appears in a display box,

the subject strikes the yellow key on the test panel as quickly as he or she

can. The dependent measure is average time to respond.

Choice Reaction Time. This test is much the same as Simple Reaction

Time. The major difference is that the stimulus in the display box is BLUE or
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WHITE (rather than YELLOW), and the subject is instructed to strike the

corresponding blue or white key on the test panel. The dependent measure is

average time to respond on trials in which the subject makes the correct

response.

Short-Term Memory. A stimulus set, consisting of 1, 3, or 5 letters or

symbols, is presented on the display screen. Following a delay period, the

set disappears. When the probe stimulus appears, the subject must decide

whether or not it was part of the stimulus set. The dependent measure is

average time to respond on trials in which the subject makes the correct

response.

Target Tracking 1. This is a pursuit tracking test. The subject's task

is to keep a crosshair centered within a box that moves along a path

consisting exclusively of vertical and horizontal lines. The dependent

measure is the average distance from the crosshair to the center 0; the

target box.

ffirriand_j_kcc_uracy. This test measures a subject's ability

to compare rapidly two stimuli presented simultaneously and determine whether

they are the same or different. The stimuli may contain 2, 5, or 9

characters and the characters may be letters, numbers, or other symbols. The

4ependent measure is average time to respond on trials where the subject's

response is correct.

Target Tracking 2. This test is the same as Target Tracking 1, except

that the subject uses two sliding resistors instead of a joystick to control

the crosshair. The dependent measure is the same as in Target Tracking 1.

Number Memory. The subject is presented with a number on the computer

screen. When the subject presses a button, the number disappears and another



www.manaraa.com

7

number appears along with an operation term (e.g., "Add 9" "Multiply by 3").

When the subject presses a button, another number and operation term are

presented. This procedure continues until finally a solution to the problem

is presented. The subject must then indicate whether the solution presented

is correct or inc6rrect. The dependent measure is total time to respond on

trials in which the subject correctly identifies the solution presented as

correct or incorrect.

Cannon Shoat. The subject's task is to fire a shell from a stationary

cannon so that it hits a target moving across the cannon's line of fire. The

dependent measure is a deviation score indicating the difference between time

of fire and optimal fire time (for example, direct hit yields a deviation

score of zero).

IIERELidniiikiiign. The subject is presented with a target and three

stimulus objects. The objects are pictures of tanks, planes, or nelicopters.

The target is the same as one of the three stimulus objects but rotated or

reduced in size. The subject must determine which of the three stimulus

objects is the same as the target object. The dependent measure is average

time to respond on trials in which the subject makes the correct response.

Target Shoot. The subject's task is to move a crosshair over a moving

target and then press a button to fire. The dependent measure is distance

from the crosshair to the center of the ta-get when the subject fires.

The criterion task

In addition to the Project-A tests, each subject was administered a

criterion task. This task was Anti-Aircraft, game #1 in the Atari Air-Sea

Battle cartridge (CX-2624). In this game the subject controls a gun placed

two thirds of the way from left to right at the bottom of the television

11
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screen. Four different kinds of aircraft traverse the screen above the gun,

in different numbers, at different speeds and altitudes, and from left to

right or vice versa. The purpose of the game is to shoot down as many

aircraft as possible in a 2-min-and-16-sec game. The control devices are a

joystick for positioning the gun and a button for firing the missile. The

missile itself was the smaller of two possible sizes (difficulty position

"A"). The dependent measure is number of aircraft shot down per game.

Anti-Aircraft is a complex psychomotor skill with a high ceiling. No

subject comes close to reaching the maximal possible performance with the

amount of testing given.

Subiects and procedures

The subjects were two independent samples of undergraduate students at

central Pennsylvania colleges. Both samples numbered 102 subjects, 50 men

and 52 women in Sample A and 49 men and 53 women in Sample B. The two

samples were collected at the same colleges two years apart, Sample A in

1988-89 and Sample B in 1990-91. Design and procedures were identical in the

two samples.

Each subject was administered the Project-A tests at the start of the

fall semester (September, October) and then again four months latv at the

start of the spring semester (January, February). The Project-A tests were

taken in a single sitting that lasted between 45 and 75 mins, depending on

how quickly the subject responded to the tests and the instructions that

preceded them. The entire administration, both test and retest, instructions

as well as the tests themselves, was computer-controlled.

In the fall, following the Project-A tests, each subject was

administered five sessions of Anti-Aircraft, each session consisting of seven

12
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games or a little less than 16 mins of playing time. All five sessions were

completed within a ten-day period, with no more than two sessions taking

place on a given day. In the spring semester, again following the Project-A

tests, each subject was given three sessions of Anti-Aircraft with the same

number of games per session and the same conditions as to distribution as in

acquisition.

COMPARISONS WITH ARMY DATA

Table 2 compares the present results (Sample A) with those collected by

Peterson, Hough, Dunnette, Rosse, Houston, Toquam, and Wing (1990) in

overlapping samples of Army enlisted people ranging in number from 8,692 to

9,269, depending on the test. The tests were scored the same way at Hershey

as in the Army, that is, a subject's score on any given test is the average

of his or her score on all trials administered.

The college students perform better on all tests, but some of the

differences are sizable whereas others are trivial. The largest differences

are for the two memory tests, in both cases half a standard deviation (s) or

more. The next largest differences are for the two "perceptual" tests

(Perceptual Speed & Accuracy and Target Identification), approximately .4s.

The differences for Choice Reaction and the two tracking tests are

approximately .33s, while those for Simple Reaction and the two aiming tests

(Cannon Shoot and Target Shoot) are less than .2s. 7hese differences are

broadly what one would expect; the more "cognitive" a test is the larger the

difference in favor of the students tends to be.

Variabilities were greater in the Army than in the Hershey data, except

for Target Tracking 2, but not greatly so, except for Simple Reaction. The

variance of Simple Reaction is nine times as large among the enlisted people
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as among the students. Simple Reaction is the first test in the battery, and

there may have been some confusion among the Army subjects as to what they

were supposed to do. If so, it would explain the high variability of Simple

Reaction in the Army data.

The column headed "Reliability" contains, for the Army data, odd-even

correlations corrected for test length by the Spearman-Brown formula and, for

the Hershey data, Spearman-Brown projections from the average correlation

involving all trials. Thus, both figures make use of all trials administered

and both use the Spearman-Brown formula. The correspondence between the two

sets of figures is startingly close.

The column headed "Temporal Stability" contains two-week test-retest

correlations for the Army data and four-month test-retest correlations for

the Hershey data. Temporal stability was better at Hershey than in the Army

for all tests except Target Identification and may have been better even for

Target Identification, given that the retest interval was eight times as long

at Hershey as in the Army.

There are at least four subject or procedural differences that may have

contributed to the better stability at Hershey. First, of course, was the

difference in population: college students versus enlisted people. Second,

the sex ratio at Hershey was essentially 50-50, whereas males predominated in

the Army sample. Third, the Hershey tests were administered by a single,

very experienced person, whereas the Army data were collected at many places

by many people, some of them not experienced test administrators. Fourth,

the Hershey subjects were tested one or two at a time, whereas the Army

sk..jects were tested in batches of as many as two or three dozen at a time.

14
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In general, however, the differences between the two arrays of stability

results are not large. The low stability for Simple Reaction in the Army

data is probably related to that test's high variability. No obvious

explanation exists for the low stability of Target Shoot in the Army sample,

except perhaps that Target Shoot is the last test in the battery.

PRACTICE EFFECTS

Practice effects occur regularly in performance tests and in several

different forms. Figure 1 illustrates the most common effect. The figure

presents mean results for the two tracking tests in Sample A at test and

retest. The means in Figure 1 are not means of individual trials. The score

for a given subject at trial i is the average of his or her scores up to and

including that trial, what I will call a "forward average." The means in

Figure 1 are means of forward averages. Forward averaging is done separately

within test and retest sessions.

The first trial in both tests happens to be easy. Hence, the mean error

score is small initially for both tests. Thereafter, however, mean

performance shows little change. There is, however, a marked and highly

significant fall-off (p<.001) from test to retest for both tasks. If one

compares the final points at test and retest, that is, the averages of all

trials administered, the subjects perform better at retest than at test on

all ten tests in the Project-A battery and in five of the ten tests the

difference is signifkant at the .01 level or better, taking both samples

into account.

A second effect, also evident in Figure 1, is that the difference

between test and retest is generally larger in the early trials than later

on. In Target Tracking 1, for example, the difference for Trial 1 is .24 log

15
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units and for the first two trials .20. At the end of practice, the averages

for all 18 trials, the difference is .14 log units. hese figures are

representative. In a typical case the subjects' initial performance is

markedly better at retest than at test, but the difference narrows with

continued testing. A plausible interpretation is that the subjects learn how

to respond from their first exposure and this learning gets them off to a

better start at retest but does not help them as much or, perhaps, at all

after the first few trials.

Trials on Memory fall into three subsets, according to size of the

stimulus set. In 12 of the trials the set consists of a single stimulus, in

12 others of three stimuli, and in the remaining 12 trials of five stimuli.

In all 36 trials the subject is subsequently presented with a probe stimulus

and asked to indicate whether or not it was included in the stimulus set.

Figure 2 presents mean results for the three subsets of Memory at test and

retest in Sample A. Again, each individual's score is a forward average,

that is, the average of his or her scores up to the trial indicated.

Mean performance for all trials improves from test to retest for all

three subsets but the difference is significant only for Subset 3. The

difference for Trial 1, however, is significant at the .01 level for Subsets

3 and 5 and at the .05 level for Subset 1. These effects have already been

noted as typical of performance tests in general. Memory, however, shows two

additional effects that are seen on'y in some tests.

The curve for Subset 3 decreases significantly (p<.01) from Trial 4 to

Trial 12 at test, and this decrease recurs in Sample B (p<.01). In the case,

therefore, of this subset it would appear that there is evidence for learning

within the test session as well as between it and the retest session. The

1 t;
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curve for Subset 1 decreases nonsignificantly from Trial 4 to Trial 12, while

the curve for Subset 5 increasei nonsignificantly over the same span of

trials.

Increasing trends are prominent at retest. The curves for Subsets 1 and

5 both increase significantly (p<.01) from Trial 4 to Trial 12 at retest and,

again, these trends recur in Sample B (p<.01). These increasing trends are

also practice effects, although, of course, they cannot be interpreted as

evidence for learning. The most plausible interpretation is that they

reflect a practice-induced fatigue or loss of concentration, which should be

more prominent at retest than at test. It does appear, however, that in the

most difficult subset (5) the increase from Trial 4 to Trial 12 occurs in the

test session also. In Sample A the increase is not significant but in Sample

B it is (pc.01).

Variances, in general, follow the mean. Table 3 presents means and

variances for Memory at test and retest, broken down by sample and subset.

Individual scores are averages of all 12 trials in a subset. As can be seen,

the coefficient of variation ranges between .21 and .27 despite large

differences in the means. This observation does not mean, of course, that

practice has no effect on variances, only that these effects rarely, if ever,

contain any information additional to that contained in the means.

In studies of skill acquisition, correlations between sessions of

practice fall into a regular and highly reprodocible pattern, the

superdiagonal form (Jones, 1962, 1969). The gist of this pattern is that the

closer together two sessions are in the practice sequence the stronger the

correlation between them. Neighboring sessions correlate most strongly,

while the weakest correlation is between the first and last session. How

17
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clearly this pattern appears depends primarily on sample size and the amount

of performance represented by a single data point. Where each data point is

based on many minutes of performance, the superdiagonal pattern is always

seen and is usually quite regular. For example, the five test sessions of

Anti-Aircraft, where each session lasts 16 minutes, show it very clearly.

Intertrial correlations between individual trials, each one lasting only a

few seconds, are another matter. The pattern may be there but in order to

show it the trials must be grouped into blocks.

Table 4 presents the intertrial correlations for Perceptual Speed and

Accuracy in Sample A at test. The trials have been grouped into blocks of

four trials each. Hence, a correlation between two different blocks is the

average of 16 intertrial
correlations, while the correlation within a block

is the average of six intertrial correlations. The latter correlations

appear in the main diagonal in parentheses.

Even with blocking, the superdiagonal pattern in Table 4 is somewhat

irregular. Nevertheless, it is unmistakably present. The correlations in

the main diagonal are, on the average, larger than those in any other

diagonal. The next largest are in the superdiagonal, the next diagonal over,

containing correlations between neighboring blocks. With each successive

diagonal the correlations become smaller until one reaches the upper,

right-hand corner, which contains the smallest correlation in the matrix,
.17.

In sone tests, the two tracking tests are cases in point, the

superdiagonal pattern is very shallow. In others, for example, Cannon Shoot

and Target Shoot, the level of correlation is very low and, therefore,

individual correlations are extremely variable.
Nevertheless, shallow or

obscured by variability as it may be, superdiagonal
pattern is a persistent

1 8
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feature of performance tests. It is also a practice effect. Superdiagonal

form does not necessarily reflect learning but it always reflects temporal or

sequential order. Like learning or loss of concentration, it is induced by

trials of practice.

Altogether, then, practice effects have been noted in five distinct

forms: mean improvements from test to retest, mean improvements within a test

session, mean deterioration within a test session, trends in variance with

practice, and intertrial correlations tending toward superdiagonal pattern.

These various effects pose many, but not necessarily insoluble problems for

performance testing. One of them concerns reliability as a function of test

length.

RELIABILITY

In a superdiagonal pattern the later a trial comes in the test sequence

the weaker its correlation is with a given early trial. Put differently,

intertrial correlations decrease along any row to the right. Table 5

presents a hypothetical superdiagonal pattern. As can be seen, the

correlations decrease regularly by .05 along any row to the right. This

feature of superdiagonal pattern has definite implications for reliability as

a function of test length.

In conventional test theory the Spearman-Brown (S-B) formula (Gulliksen,

1950) states that the reliability of a test i units in length

f31

I) R,
where Ri is the reliability of a test of unit length. When i >2, R1 is taken

as the average correlation among the i units, that The first row at

the bottom of Table 5 shows this average correlation--for the first two

9
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trials, the first three, out to all seven trials. As is clear from the

table, these averages decrease as one moves forward from the first to the

last trial. Because the correlations decrease along any row to the right,

each new trial adds to the average a column of correlations lower than those

already in it; hence 77i drops a notch.

Low reliability in a knowledge test is corrigible. It may be laborious

to do, but in principle one can always lengthen the test, while maintaining

the same average inter-item correlation, and thereby improve its reliability.

In a performance test, however, 7. may not remain the same as the test is

lengthened; in most tests it decreases. The bottom row in Table 5 gives Ri

as calculated by the S-B formula for i 1,..., 7. As i increases, 37i both

decreases and is more strongly amplified by the S-B formula. The

implication, however, is negatively accelerated while, in this example, the

decrease in ri proceeds at a constant rate. The upshot is that Ri increases

sharply at first, reaches a maximum (at i 4), and then decreases gently.

In this case, therefore, reliability would not be improved by lengthening the

test. In fact, the test could be shortened to 4 trials with no loss of

reliability.

The superdiagonal pattern in Table 1 is perfectly regular; that is,

correlations are constant within any given diagonal and regularly decreasing

between diagonals. Superdiagonal patterns are not necessarily level,

however. In many psychomotor tests they have a tendency to rise with

practice (Reynolds, 1952) and, where this is the case, the tendency for 7i to

fall with practice may be nullified or even reversed. By the same token,

however, correlational level may also fall with practice for other reasons

than superdiagonal patterning. Fatigue or loss of concentration may manifest

2 ()
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itself in correlational levels and patterns as well as in mean performance.

In the presence of fatigue or wavering attention performance tends to be

fitful and erratic, which introduces novel variance not present in earlier

trials of practice. The effect is to produce a drop in correlational level

and, therefore, to bring about a reliability optimum earlier than it would

have.occurred in a perfectly regular superdiagonal pattern (but see the

discussion under Comment).

Figure 3 presents reliability results for Simple Reaction. The average

correlation up to trial i (solid squares) tends to decrease sharply as i goes

from 2 to 10. A straight line has been fitted to these nine points and

extended out to trial 25. The corresponding reliabilities (solid circles)

are Spearman-Brown projections (Ri) for a test of length, i, given that a

test of unit length has reliability r1. The smooth curve for Ri was obtained

by applying the S-B formula to corresponding points, r, on the regression

line. The smooth curve has also been extended to Trial 25. Such a curve

reaches a maximum at

where a and h are the intercept and slope of the regression line. In this

case i* equals 19.2. It would seem, therefore, that the reliability of

Simple Reaction could be improved by lengthening the test but only modestly.

Roughly doubling the number of trials would increase reliability by .02 but

still leave it at .897, well short of unity. More than doubling the number

of trials would be counterproductive.

Figure 3 can be improved in two key respects. First, the regression

line in Figure 3 was obtained by weighting thelFi equally. The7i, however,

21
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are based on very different numbers of correlations. For example, F2 is

based on only one correlation, whereasTio is based on 45. It would make

sense on strictly statistical grounds to weight the Ti for the number of

correlations on which each one is based. It makes especially good sense when

one remembers that the main purpose in fitting the regression line is to

predictthecoursethatr.will follow beyond the administered number of

trials (n). 1he71 often follow a decreasing, negatively decelerated course.

Therefore, the best prediction of where7i will lie when i>n is the slope of

the r
i
curve, not overall, but just before the administered sequence reaches

its end. Weighting the 77i for the number of correlations on which each one

is based effectively approximates such a slope. The early points are heavily

discounted in favor of the last few points. The resulting line in such cases

is shallower than the one obtained by equal weighting of the 7i. Hence, the

number of Wals for optimal reliability, i*, is increased (pushed further

out).

The second key improvement concerns how to estimate R1. The estimation

based on 7 assumes that all trials have equal variances. If this is not so

(and it never is), the appropriate estimate becomes

00 evcR1 = aft.. =
V 44.441:

where Iry
i
and Wig

i
are

'
respectively, the averages of all covariances Ind

variances up to trial i. In effect, 7, weights the correlations for the

variances involved in them. Correlations between trials with large variances

count for more than correlations between trials with small variances. This

improvement has no systematic effect on i*. Sometimes it increases i* and

sometimes, as in the case of Simple Reaction, it decreases i*.



www.manaraa.com

19

Figure 4 presents the reliability results for Simple Reaction, making

these two improvements. The net effect is to decrease i* to 14.8 and to

reduce the optimal reliability to .874.

Ar
Table 6 presents reliability results for all ten tests, using ri and a

weighted regression line. For two tests (Perceptual Speed & Accuracy and

Target Tracking 2) the regression line has positive slope (b>0). In these two

cases there is no optimal reliability short of unity. In the other eight

tests slope is negative, i* finite, and optimal reliability some value less

than unity. In five of the eight cases, however, i* is remote and, with the

exception of Number Memory, Rit, the projected optimal reliability, is not

much less than unity. In one case (Cannon Shoot), however, i*<n. That is,

the number of trials for optimal reliability is less than the number

administered. In such a case reliability cannot be at all improved by

lengthening the test. In fact, the test could be shortened without reducing

optimal reliability. In two tests, Target Shoot as well as Simple Reaction,

i* lies just five trials ahead of where the administered sequence stops. In

both cases little is to be gained by increasing the number of trials and

optimal reliability lies well short of unity.

TEMPORAL STABILITY

In temporal stability one has two sequences of trials to consider, both

test and retest, instead of just one. The procedure used in reliability,

howevv, generalizes naturally to stability. For each individual one

obtains forward averages at test (i) and at retest (j) and then calculates

2 3
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the n correlations where i . j. For purposes of projection, the temporal

stability coefficient is analyzed into three components:

i 5 = , --1---; ..t. ( A. .060

...1. .1.

; J't . a. C. 0 V ,. 1
dm.' t *

lL

ia 1 + < d 1)114; ( rriVi 4-07;A a° 1 +P Cti si ) Ifte( o

The first and third components are the S-B expansion terms, exactly as they

would appear were we calculating S-B reliability at trial i or j, from the

test or retest results. Taken together, these two components are the

geometric mean of the test and retest reliabilities. The middle term, called

the "covariance ratio," is the ratio of the average covariance between test

and retest to the geometric mean of the average covariances within test and

retest. This ratio is an upper bound to temporal stability, but not a

correlation coefficient. The covariance ratio may exceed unity and often

does. When it does, of course, it is not a least upper bound because unity

is then less than it and unity is also an upper bound to temporal stability.

Finally, the decomposition of temporal stability into the covariance ratio

and the two expansion terms is exact. That is, if one calculates the

components and multiplies them together, the result is exactly the same as

calculating temporal stability directly (see Technical Note I).

If the covariance ratio decreases as i (and I) increase, the fact is a

sufficient condition for temporal stability to reach an optimum. Figure 5

presents a case in point, Choice Reaction in Sample A. A straight line Nis

been fitted to the covariance ratios, weighting each ratio for the number of

between-covariances on which it is based. For purposes of presentation, the

regressionlinesfor7.and 7. have been contracted into a single curve,J.
obtained by plotting the geometric mean of corresponding points on the two

1'4
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regression lines. This one curve, it should be noted, is not in general a

straight line. It should also be noted that the difference between the

geometric mean of the two expansion terms and the S-B expansion of the

geometric mean of the two regression lines is generally negligible. The

curve for temporal stability was obtained by applying the decomposition

formula for temporal stability, given above, to the fitted values for1:1,7j,

and the covariance ratios.

The empirically obtained temporal stability for Trial 27 is indicated in

Figure 5 as a "false optimum." The point here is that if one had only the

empirically calculated stabilities, the value at Trial 27 would be larger

than any value either before or after it and might, therefore, be considered

optimal. The difficulty with so identifying an empirically obtained value is

that one could easily be capitalizing on chance. Any empirically obtained

value contains some amount of error. The hazard, therefore, of identifying a

value as optimal when, in fact, its "optimality" may be a chance upward

deflection is considerable. Fitting a smooth curve for temporal stability

has, of course, the merit that it allows us to project values for temporal

stability beyond where the administered sequence ends. It also has the

advantage of basing a reliability or stability optimum on the entire set of

obtained results rather than a single data point. The point where stability

reaches an optimum cannot be obtained in closed form, as can the

corresponding point for reliabilit). Hence, stability optima must be

obtained by numerical means. In the present case the effect is to push the

point of optimal stability from Trial 27 out to a little past Trial 45.

Decreasing covariance ratios are a sufficient but not a necessary

condition for temporal stability to reach an optimum. If7i and 7i are

25
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decreasing and especially if they are low, temporal stability may still

increase to an optimum and then decrease--even if the covariance ratios are

rising. Figure 6 presents stability results for Target Shoot. Intertrial

correlational levels are very low, less than .10 within sessions. At these

levels, when r
Ao

i
and

Aw
r
j decrease at even modest rates, the proportional drops

in the corresponding expansion terms tend to be substantial. Because

covariance ratios lie at a much higher level, in the present case, on the

order of .90, increases in the covariance ratios tend to be small

proportionally. The decomposition formula for temporal stability, however,

is multiplicative. What matters are proportional changes. Hence, it may

easilyhmenthatsmalldecreasesin7.and are more than enough to match

much larger absolute increases in the covariance ratios.

Table 7 presents stability results for all ten tests. The retest

regression slopes (b2) are negative in eight of the ten tests, just as were

the test regression biopes (b1 in Table 6). There is, moreover, a good deal

of correspondence between bl and b2. Simple Reaction, for example, has much

the most negative slope at both test and retest. Slope for the covariance

ratios is Positive in eight of the ten tests. In general, the covariance

ratios tend to rise as i and i increase.

These opposing trends give rise to a rather sharp dichotomy. First,

stability reaches an optimum in five of the ten tests, and in five it does

not; reliability optima were reached in eight of the ten tests. Second, all

five of the stability optima but only three of eight reliability optima are

binding. Third, the optimal stabilities are much lower than the optimal

reliabilities. Stability, in short, seems either to reach an optimum early,

in the present sample, prior to Trial 50, or not at all. By the same token,
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the maximal stabili4 attainable is either relatively low, in the present

sample, less than .80, or unity--in one instance, indeterminate (see the

footnote for Target Tracking 2).

SAMPLE VARIATIONS

Reliability and stability are sample statistics and, like any other

sample statistic, subject to variation from one sample to the next. How
large these variations are likely to be is best determined by deriving the

sampling distribution or, failing that, by approximating it at selected

points (specified by sample size, number of trials administered,

correlational levels, etc.) using numerical methods. Neither of these

efforts is attempted in this paper. We do, however, have two independent

samples of 102 subjects each and can, therefore, obtain a crude preliminary

notion of how much variation one may expect from one sample to the next.

Table 8 presents optimal-trial numbers for reliability and stability in

the two samples or notes that none was found. Three of the tests in Sample A
show binding reliability optima and two of these tests (Cannon Shoot and

Target Shoot) show them again in Sample B. The remaining seven tests show

more distant optima or none at all in both samples. Altogether, five of the

tests (Target Tracking 1 and 2, Cannon Shoot, Target Shoot, and Target ID)

show reasonably consistent results in the two samples. Two (Memory and Choice
Reaction) are 'moderately

discrepant, and three (Simple Reaction, Perceptual S
& A, and Number Memory) sharply so.

For reasons that will be given later under Comment, temporal stability
is theoretically preferable to reliability as well as practically more
relevant. It also appears to be more consistent. Eight of the ten tests
(all but Perceptual S & A and Target ID) are reasonably consistent.

27
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Temporal-stability curves--or reliability curves too, for that matter--rise

slowly to an optimum and decrease slowly after it. It is not surprising,

therefore, that the precise location of an optimum may vary by 10, 20, or 30

or more trials from one sample to another. By the same token, however, the

exact location of the optimum does not matter a great deal. The difference

in stability (rather than trial numbers) is small, as a rule, not more than

.01 or .02.

The optimum, for example, for Choice Reaction in Sample A is 45.7

trials, three times further out than in Sample B. Yet this discrepancy makes

very little difference. Increasing the test in Sample A to 45 trials would

indeed improve its stability--but by less than .01. What matters most is the

existence of a stability optimum. Figure 7 presents the stability results

for Choice Reaction in Sample B. The decline in the empirically obtained

stability coefficients is apparent. Further, the similarity of this figure

and the one for Sample A (Figure 5) is striking, despite the threefold

difference in i*. Even with two samples of only 102 subjects, it seems clear

that no appreciable gain in stability can be had by increasing the length of

Choice Reaction. In its case, other approaches to increasing stability, for

example, administering the test in two or more bouts of, say, 15 trials each,

should be considered.

On the other hand, in those tests where an optimum does not exist,

stability continues to increase as i and i increase, as far as can be

projected, with no limit other than unity. Neither of the two tracking

tests, for example, show an optimum in either sample. Their stabilities, as

we know, are already high. It would appear, however, that by increasing test

length they could both be made even more stable.

28
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Altogether, stability optima tend not to exist at distant or remote

trials. The optimum either does not exist or is binding. Further, most

tests seem to fall consistently into one or the other grouping. The

probability of as much agreement between Samples A and B as appears in Table

8 is less than .09 by Fisher's exact test. As a consequence, even samples of

a few hundred subjects may be informative. If a stability optimum does not

exist, ihen stability can be at least appreciably improved by lengthening the

test. If a stability optimum does exist, then other ways of possibly

improving temporal stability should be tried.

PREDICTIVE VALIDITY

Once a test has been constructed, it may be used to predict performance

on numerous external criteria. At this point the issue is no longer test

construction (test length) but test scoring. The usual practice is to

average all trials given. The rationale underlying this practice is the

Spearman-Brown formula. By including all trials one maximizes reliability

and stability and, hence, predictive validity for all criteria. We have

already seen, however, that the assumptions of the S-B formula are

systematically violated in performance testing. Furthermore, there is now a

respectable body of literature to the effect that the differential content of

a task changes with practice or, in the psychometric context, that the

predictive validity of a performance test may vary from early to middle to

late trials (Fleishman & Hempel, 1954; Ackerman, 1987).

Forward averages, of course, include only some trials, specifically, the

first 1, and they too may be correlated with an external criterion. When

they are, the correlations (predictive validities) always rise at first and

sometimes reach an optimum, after which they decrease. If, however, a
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forward optimum in predictive validity exists, then averaging only those

trials up to and including the optimum will yield a higher predictive

validity than the usual practice. Since the differential composition of a

test may change with practice and an external criterion may be most strongly

related to those components of a test that predominate at the beginning (say)

or in the middle of a practice series, stability and validity optima do not

necessarily fall on the same trial. For the same reasons, the optimal

forward average for purposes of prediction may vary from one external

criterion to another.

Averaging from the first trial forward is only one way to generate a

series of averages from a series of test trials. Another way is to average

from the last trial backwards. Backward averages may also be correlated with

an external criterion. When they are, the correlation (predictive validity)

rises at first and may reach an optimum prior to the first trial. In these

cases, as in the corresponding cases involving forward optima, averaging only

those trials up to and including the optimum (following it in the practice

series) yields a higher predictive validity than averaging all trials given.

Backward optima are especially helpful in improving a test's validity when a

forward validity optimum also exists.

Four of the ten Project-A tests have high conventional validities when

performance four months later on the first retest session of Anti-Aircraft is

used as the criterion. The two best predictors are Target Tracking I and 2,

with validities of .696 in Sample A (both tests), .707 and .654 in Sample B.

Second best are the two aiming tests (Cannon Shoot and Target Shoot), with

validities of .594 and .51 in Sample A, .474 and .458 in Sample B. Serial

averaging (forward or backward) yields very small and nonsignificant

3
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improvements for these four tests. This result may not be happenstance. It

could be that high correlations are less likely to change with practice (or

test administration) than low ones.

Validities for the remaining six tests range from .333 (Memory) and .372

(Choice Reaction) down, in Samples A and B respectively. Five of the six

tests, all but Choice Reaction, show forward optima in Sample A. The results

for three of these tests (Simple Reaction, Number Memory, and Target ID) are

presented in Figure 8. In all three cases validity follows a similar course,

starting low, rising to an optimum, and then trailing off. In Target ID, for

example, averaging the first five trials only yields the best result, .306.

As more and more trials are added to the average, validity falls away until,

when all 36 trials are averaged, it has fallen to .196.

Three of the six tests (Choice Reaction, Memory, and Number Memory) show

backward optima in Sample A. The two memory tests show both a forward and a

backward optimum. Number Memory, for example, has a forward optimum at Trial

16 and a backward optimum at Trial 4. Two optima, however, are one too many.

Forward and backward averaging are only two out of a great many possible ways

of searching out validity optima. Altogether there are 2n or, in the case of

Number Memory, 2
28

possible combinations of trials. Were we to search all of

these combinations, capitalization on chance would be extreme and shrinkage

at cross-validation would also be extreme.

The most straightforward way to avoid these extremes is to limit the

number of series that one examines. Accordingly, in defining an optimal

validity average I have adopted the following three-step algorithm:

3 1
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1, If neither a forward nor a backward optimum exists, then the optimal

average is the average of all trials given (the conventional

average).

2, If a forward optimum exists but not a backward optimum, the optimal

average is the average of all trials from the first up to and

including the optimal trial. Similarly, if a backward optimum exists

but not a forward optimum, the optimal average is the average of all

trials from the last back to the optimal trial.

3, If both forward and backward optima exist, the average of all trials

spanned by the two optima is usually more valid than either the

forward or backward optimum. If so, the optimal average is the

spanning average. If not, the optimal average is the more valid of

the forward and backward optima.

Implicit in this algorithm is a restriction to consecutive trials. In itself

this restriction reduces the total number of possibilities to be searched

from 2n to n(n+1)/2. Capitalization on chance is still involved, of course,

but its extent has been severely curtailed. Figure 9 illustrates the

application of the algorithm to Number Memory, The two upward-pointing

arrows mark the backward and forward optima, on the left and on the right

respectively.

Table 9 presents validity information for the six tests other than the

two tracking and the two aiming tests in Sample A. It includes: number of

trials, the optimal average as reached by the algorithm just described, the

validity of that average, the validity of the conventional average, and the

difference (gi) between the optimal and conventional averages. The final two

columns contain the z-score (unit normal deviate) for A (a difference



www.manaraa.com

29

between two correlations sharing a common variable and based on the same

subjects) and the associated one-tailed significance level (Steiger, 1980, p.

247, Equation 14). Three of the six tests are significant at the .05 level

and two others at the .10 level.

These results are for single tests. We may also ask how much difference

optimal averaging makes in the validity of best composites of the Project-A

tests. The validity of the six tests in Table 9 are representative of

real-world, job-performance validities (Ghiselli, 1966; Schmidt, Hunter, &

Pearlman, 1981). If these six tests are scored in the usual way, they yield

a multiple correlation of .413. If the same six tests are scored by optimal

averages, the multiple correlation is .496. The difference between the two

multiple correlations yields a z-score of 2.03, significant at the .03

level. In short, for tests with representative validities optimal scoring

may improve the validity of a test or battery by as much as .10. In

practical terms, gains of this magnitude in tests designed to be used on a

mass basis for personnel assignment are important. Since, moreover, these

gains can be had "for nothing," there is no reason not to take them.

There remains, of course, the problem of capitalization on chance.

Validity optima, unlike those for reliability and temporal stability, are not

based on the entire set of results. A forward optimum, for example, is

simply a forward average with a validity greater than that of any other

forward average, spocifically including the last, that is, the average of all

trials administered. An average that meets this description could easily do

so on the basis of a chance upward deflection. The algorithm for selecting a

single optimum to some extend compounds this problem; and forming a multiple

33



www.manaraa.com

30

composite compounds it further. It is necessary, therefore, always to check

a validity optimum in an independent sample of subjects.

Table 10 presents such a check. The results are for Sample B, where the

optimal.averages are those obtained in Sample A (see Table 9) and the best

composites, both for conventional and optimal scoring, are formed using the

same weights as were found to maximize validity in Sample A. In three of the

six tests the difference A favors conventional scoring and in the remaining

three optimal scoring. The latter three differences, however, are all larger

than the three differences that went "the wrong way" and one of them, that

for Number Memory, is marginally significant, p<.08. The A for best

composites goes in the right direction but by an amount 45% that in Sample A.

The directions and magnitudes of these differences are about what one

would expect and probably representative of the gains to be had by optimal

validity averaging. In absolute terms, however, gains ranging from .04 to

.09 are not large. Significance cannot be expected unless sample size and,

therefore, the power of the test are greater than they are in this study.

SUBSET ANALYSIS

The gains to be made by optimal scoring, though worthwhile, are not

large. In order substantially to improve the validity of a test its content

must be changed. In a few tests, Simple Reaction is a case in point, all

trials are the same. In such a case one can always revise the test but one

cannot distinguish any subset of trials in the existing test that has more

validity than other subsets. In most tests, however, it is possible to

distinguish such subsets. On any given trial the Project-A Memory Test, as

pointed out earlier, presents the subject with I, 3, or 5 stimuli to be

retained in short-term memory. Accordingly, one can separate the trials of
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Memory into three corresponding subsets. Other tests involve different types

of stimuli (letters, numbers, or other symbols), moving or stationary

stimuli, different time delays, or other parametric variations, which can be

used to separate the trials into subsets.

"Subset analysis" serves the same ends in performance-test theory as

item analysis does in conventional psychometrics. Both kinds of analysis

concern the selection of some materials for inclusion in a test and others

for exclusion, either in original development or in subsequent revision. The

difference is that item analysis focuses on individual items and subset

analysis on subsets of trials.

Implicit in this defining difference are three others which require

comment. First, in a conventional analysis items are distinguished from one

another by their relation to the criterion. Typically, one includes items

with high validity and excludes items with little or no validity.

Oftentimes, however, one does not have enough items of the first sort and

wishes to create more. But what do these items have in common with one

another apart from high individual item validity? In order to write mcre

such items one must have an answer to this question; one must know what kinds

of items to write. Accordingly, one conducts factor or cluster analysis in

an effort to characterize the valid items. Once that is done, it may be

possible to write more valid items--but not always. The problem of

accurately characterizing valid items in a conveltional analysis and then

creating more items like them is a difficult and frequently frustrating task.

In subset analysis it is no problem at all, because the subsets are

distinguished from the beginning by observable, easily noted features. If

trials with 3 stimuli are more valid than those with I or 5, it is a simple

3
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matter to draw more combinations of 3 stimuli from a previously prepared list

of suitable stimuli.

The second major difference between item and subset analysis concerns

capitalization on chance. In a conventional analysis the number of items

considered for inclusion in a test is usually much larger than the number

selected, Hence, capitalization on chance and consequent shrinkage at

cross-validation are pronounced. In subset analysis the number of subsets is

usually small, not more than a handful. Hence, capitalization on chance,

while it exists, is much less of a problem.

The third difference relates to substantive theory. Item analysis is a

bitterly empirical procedure. Each item is related separately and directly

to the criterion. The only link between one item and another is a latent

and, therefore, nonmanipulable factor, an abstract idea. In subset analysis

each subset is distinguished by an observable and manipulable feature that

may well be or have been the subject of experimental study. It is this

feature that links subset analysis to cognitive science. The number of

objects, for example, that can be retained in short-term memory has been

studied extensively by experimental investigators (Miller, 1956). One result

is that seven is about the limit of the normal range. Hence, sets of nine or

even seven stimuli to be retained in working memory would not discriminate

among most subjects; too few )eople would respond correctly. Hence, too,

sets of seven or more stimuli are unlikely to be either temporally stable or

predictively valid.

In Perceptual S & A the subject is asked to compare two strings of

symbols and indicate whether or not they are the same. The strings may be

two, five, or nine stimuli in length. Accordingly, the trials of Perceptual

3 f;
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S & A break down into three subsets of 12 trials each. Figure 10 presents

validity results for these three subsets in Sample A. The plotted points are

correlations between forward averages within subsets (ignoring trials in

other subsets) at test and the first retest session on Anti-Aircraft. Table

11 presents results for both samples and for temporal stability as well as

predictive validity. Each subset in Table 11 is represented by the average

of all 12 trials in the subset.

In Sample A the simplest of the three subsets (Set 2) has the best

validity and the most complex (Set 9) the poorest. This same ordering

reappears in Sample B and with similar spacing. In Sample A the difference

between Sets 2 and 9 yields a unit normal deviate of z . 2.06. A two-tail

test is appropriate in this case because any ordering could have been

accommodated. In addition, three subsets are involved. Applying the

Bonferroni procedure, one obtains a significance level of .15. In Sample B,

however, the directions of all differences are stipulated in advance. Hence,

though the unit normal deviate in Sample B, 1.80, is less than that in Sample

A, its significance is greater, p<.04.

Table 11 illustrates two points. The first concerns scoring for

validity. The validities for Subset 2 in Table 11 are better than the

corresponding optimal validities for Perceptual S & A in Tables 9 and 10. In

this instance, rescoring by iubset analysis would have yielded a better

result than optimal averaging in the complete set of 36 trials. Even under

heavy constraints to guard against excessive capitalization on chance,

scoring for validity in performance testing is a three-step process: optimal

averaging in the set of all trials, subset analysis, and optimal averaging

within subsets.

3 7
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The second point illustrated by Table 11 is the possibility of using a

subset analysis to restructure a performance test. Since Sets 2 and 5 are

more valid than Set 9, the idea suggests itself of restructuring the test so

that it includes 18 trials of length two, 18 of length five, and none of

length nine. Such a restructured test would be expected to have a validity

with conventional scoring on the order of .28 instead of the present validity

with conventional scoring of .11. This suggestion, I will argue, should be

rejected.

Perceptual S & A is far from being the best predictor of Anti-Aircraft

in the Project-A battery. The two tracking tests and the two shooting tests

are all much more valid than it is. There may well be, however, other

criteria, clerical criteria, perhaps, for which Perceptual S & A is the

primary predictor. It would make sense to restructure Perceptual S & A to

make it more valid for such a criterion because in that case one would be

improving the validity of the battery as a whole for that criterion. It

would not make sense in the present case. The gain for the battery as a

whole in predicting Anti-Aircraft would be at best very small; and

restructuring Perceptual S & A to predict Anti-Aircraft might easily weaken

its validity for those criteria it currently predicts better than other tests

in the battery. Any such restructuring would be almost literally "penny wise

and pound foolish."

The results for temporal stability in Table 11 underscore this hazard.

In Sample A temporal stability is best for Set 9 and worst for Set 2. If

this result held generally, then by restructuring Perceptual S & A to make it

more valid for Anti-Aircraft, we would by the same stroke be making it less

stable and, therefore, probably less predictive of those criteria where it

38
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matters most. As it happens, the stability ordering reverses itself in

Sample B. On balance, stability probably does not vary much one way or the

other among the three subsets. Ideally, however, a restructuring to improve

validity should improve stability as well.

Cannon Shoot provides an illustration. In both samples Cannon Shoot

predicts the Anti-Aircraft criterion about as well as it predicts itself over
the same interval of time (four months). Predictive validity in the two

samples is .594 and .474; temporal stability in the same two samples (A and B

respectively) is .534 and .545. The difference favors validity by .06 in

Sample A and stability by .07 in Sample B. The main reason, it would appear,

that Cannon Shoot doesn't predict Anti-Aircraft better (as well, for example,
as the two tracking tests predict it) is its relatively low stability. If

.the stability of Cannon Shoot could be improved, its validity for

Anti-Aircraft would likely also improve. It is possible that restructurin7

Cannon Shoot to make it more stable and more predictive of Anti-Aircraft

might make it less valid for some other criteria. The validity, however, of
Cannon Shoot for these other criteria would almost certainly be less than it
is for Anti-Aircraft and less, too, than the validity of some other tests for
those same criteria. For the battery as a whole the gains from restructuring

Cannon Shoot would outweigh the losses.

The trials of Cannon Shoot differ in various ways: the position of the
cannon, the speed and direction of the target. It would be possible,

therefore, to separate trials into subsets on the basis of these variations.
There would, however, be more than a few such subsets and, as will be seen,

the main difference among trials is not so much any one of these variations
as it is the trial's

overall difficulty. Accordingly, the trials of Cannon

3 9
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Shoot were divided into three groups of 12 trials each on the basis of mean

performance at test.

Mean performance is, of course, a random variable. Hence, which trials

are the 12 most difficult and which the 12 easiest may vary from sample to

sample. In samples of even moderate size, however, this variation is likely

to be minor. In the present data II of the 12 easiest trials and 11 of the

12 most difficult trials are the same in Samples A and B; 10 of the 12

middle-difficulty trials are the same in the two samples. In large samples

there should be no variation at all from sample to sample, although even then

the distinction between grouping trials by difficulty level and grouping them

by fixed parameter settings should not be lost. In any case, grouping trials

by difficulty level preserves the essential character of a subset analysis,

because the difficulty of a trial can be determined independently of

stability or validity considerations. In addition, one can easily add new

trials by reproducing the combinations of position, speed, and direction that

are known to be hard or easy in the existing tests.

Figure II presents validity results for the three difficulty subsets in

Sample A. Table 12 presents both validities and stabilities for the three

subsets in Samples A and B. Each subset is represented by the average of all

12 trials in the subset. In both samples Subset Hard is most predictive and

most stable, while Subset Easy is least predictive and least stable. Thl

differences, moreover, are large, ringing from a minimum of .149 (stability

in Sample A) to a maximum of .412 (stability in Sample B). The differences

for validity in Sample A and stability in Sample B are significant at the .02

level or better (1 values of 2.89 and 3.51) even if one uses a two-tailed

test and makes the Bonferroni correction. The conclusion is clear: if Cannon

4(1
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Shoot were restructured to consist exclusively of difficult trials, its

temporal stability and predictive validity could both be improved.

When a reliability or stability optimum is projected at some point past

the end of the administered series, one cannot be sure that lengthening the

test to that point will have the desired effect until one actually does it.

Scoring for validity is not conditioned on any change in the existing test

and, therefore, requi.ces no check other than cross-validation. When a test

is restructured following subset analysis, the possibility of contextua7

effects becomes a major threat. Given the results in Table 12, it seems

likely that Cannon Shoot restructured to consist of 36 difficult trials would

be both more valid and more stable than the existing test; but it may not be

so. One can only be sure after the fact.

COMMENT

The results presented in this paper constitute only the beginning of a

performance-test theory. How should the ability to perform well on a given

test be modeled? How is fairness with respect to race and sex to be

understood or lack of fairness to be detected, how are fair tests to be

constructed? How are the tests to be protected against unfair advantage

obtained by deliberate practice on the same or similar tests? These and many

other questions remain to be addressed. At this point I will develop only

one point. It concerns the greater importance of stability than reliability

optima.

Learning or skill acquistion is one among many processes that can

produce a superdiagonal correlation pattern. Almost any series of

measurements ordered in space or time will generate correlations tending

toward superdiagonality (Jones, 1960). Suppose, then, that in a given test

4 1
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the intertrial correlations, apart from differences in individual baselines,

are mediated by factors that come and go, for example, response sets,

fatigue, distractions, variations in concentration, and the like. The closer

two trials are the more likely it is that they will be affected by the same

transient factors and, hence, covary together.

Now consider the forward averages for a given individual. Some

transient factors will improve the individual's performance and others will

worsen it. As a result, the subject's average performance will come more and

more to approximate his or her baseline level as the test lengthens; and the

ratio of true-score to total variance (reliability) will increase

monotonically. In short, there will be no reliability optimum. This

discussion began, however, with the assumption that intertrial correlations

fell into a superdiagonal pattern because of transient factors. If so, then

reliability as calculated by the Spearman-Brown formula could reach an

optimum, even though, as has just been seen, no reliability optimum exists.

The hypothesis of superdiagonality mediated by transient factors has

other consequences, however. If the hypothesis were true, there would be no

mean change from test to retest. Nor would there be any stability optimum.

Covariances between test and retest do not involve transient factors and

should in the absence of enduring changes with practice be flat, while the

variances of forward averages within test or retest decrease monotonically as

increases. Finaly, stability ought not to place a bound on the validity

of any test.

All three of these cohsequences are false. Mean performance improves

from test to retest in all tests; contrary to expectation, temporal stability

reaches an optimum in five of the ten tests; and the validity of at least one
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test, Cannon Shoot, appears clearly to be limited by its relatively low

stability. The superdiagonal patterns among intertrial correlations at test
and retest cannot, therefore, be explained as resulting from transient

factors, at least not entirely. Such factors may, however, still play a role

additional to learning or skill acquisition. That is, both learning and

nonlearning (transient) factors may be involved.

The most direct way to handle this complication is to rely primarily on

stability optima, which cannot be explained in terms of transient factors and
must, therefore, have their origins in more enduring changes with practice.
This conclusion is reinforced by a further consideration. Reliability is a

theoretical quantity, defined in terms of true-score and error variance. As
such it is open to all the vagaries of interpretation. Temporal stability,
on the other hand, is obtained empirically. When, therefore, it rises to an
optimum and then decreases, as it does in Choice

Reaction (Sample B), the
fact is observable.

At one level, serial averaging is a prosaic
data-processing procedure.

It is based, however, on a view of performance
testing that departs

fundamentally from current test theory. The gist of that departure is not to
replace one theory with another but to hybridize test theory with the study
of individual differences in skill acquisition and retention. Conventional
test theory is purely structural; time has no place in it. The study of
skill acquisition and retention, however, is processual; everything in it is
embedded in time and is, therefore,

temporally ordered. Many parts of the
hybrid theory presented in this paper come from its processual component: for
example, the treatment in terms of trials, the centrality of order, or the

recognition of established regularities such as superdiagonal form. The

4 3
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overall approach is open, moreover, to further imports from the study of

skill acquisition. Where stability optima exist, a possible solution (in

addition to expanding some subsets and eliminating others) might be to

administer the test in two or more well-separated bouts, each containing many

fewer trials. Distribution and transfer effects, reminiscence, many possible

results from cognitive science, may ultimately find a place in a theory of

performance testing hybridized to include performance as well as test

phenomena.

TECHNICAL NOTES

gamma1. Average intertrial covariance within a test or retest session (covk) may

be calculated either directly or indirectly. If all subjects get a score on

all trials, the two ways of calculating covk come to the same thing.

However, when the dependent variable is mean decision time on only those

trials where a subject responds correctly (as it is in five of the ten

Project-A tests), this condition is not met. When r.alculated indirectly,

covk is obtained from the formula for the variance of a forward average, that

is,

A.,
V 0.014 C. VA )/.%

or

c o irdit = vanAVA.

where var
k
and cov

k
represent the average trial variance and covariance up to

trial k. The merit of the indirect calculation is that when C-5k is so

obtained, the decomposition formula for temporal stability remains exact. To

4
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be consistent, the direct calculation is also used in making reliability

projections.

2. Backward optima are not informative about how changes in test length

might affect reliability or temporal stability. A forward average of, say, 5

trials retains its meaning (refers to the same trials) regardless of how many

trials are ultimately given. A backward average of 5 trials, however, refers

to trials 6-10 if 10 trials are given and to trials 11-15 if a total of 15

trials is given. A backward average changes its meaning when the total

number of trials changes. As a consequence, no conclusion regarding changes

in test length can be drawn from a backward reliability or stability optimum.



www.manaraa.com

42

REFERENCES

Ackerman, P.L. (1987). Individual differences in skill learning: an

integration of psychometric and information processing perspectives.

Psychological BOletin, 102, 3-27.

Bittner, A.C., Jr., Carter, R.C., Krause, M., & Harbeson, M.M.. (1983).

Performance Evaluation Tests for Environmental Research (PETER): Moran

and computer batteries. AyiationSpaceandErnenlM,

54, 923-928.

Eaton, N.K., Nanser, L.M., & Shields, J. (1985). Validating selection tests

for job performance. In J. Zeidner (Ed.), Human productivity

1.12li..1-Ji an d(A-----.121,/e.P,M--.eTientof e "
New York: Praeger.

Englund, C.E., Reeves, 0.L., Shinglebecker, C.A., Thorne, D.R., Wilson, K.P.,

& Negge, F.W. (1987). Unified tri-seryice cognitive performance

assessment battery (UTC-PAB): I. Design and specification of the battery

(Report No. 87-10). San Diego, CA: Naval Health Research Center.

Fleishman, E.A. & Hempel, W.E., Jr. (1954). Changes in factor structure of a

complex psychomotor test as a function of practice. Psychometriki,

19, 239-252.

Ghiselli, E.E. (1966). The validity of occu ational a titude_tests. New

York: Wiley.

Gulliksen, H. (1950). Jheorv of mental tests. New York: John Wiley &

Sons.

Jones, N.B. (1962). Practice as a process of simplication. Psychological

Elliot 69, 274-294.

41;



www.manaraa.com

43

Jones, M.B. (1969). Differential processes in acquisition. In E.A. Bilodeau

(Ed.), ,Erinsiplu_sf_s_lc_gcillauisition. New York: Academic Press,

1969.

Jones, M.B. (1960).
112.1.111.SSIZO.Aiiglial ahalvsis. Pensacola, FL: U.S.

Naval School of Aviation Medicine (Monograph 4).

Kennedy, R.S., Baltzley, Wilkes, R.L., & Koontz, L.A. (1989).

Psychology of computer use: IX. A menu of self-administered

microcomputer-based neurotoxicology tests. Perceptual and Motor

Skills, 68, 1255-1272.

Kennedy, R.S., Bittner, A.C., Jr., Carter, R.C., Krause, M., Harbeson,

McCafferty, D.B., Pepper, R.L., & Wiker, S.F. (1981). Performance

Evaluation Tests for Environmental Research (PETER): Collected papers

(NBOL-80R008). New Orleans, LA: Naval Biodynamics Laboratory.

Kyllonen, P.C., & Christal, R.E. (1989). cognitive modeling of learning

abilities: a status report of LAMP In R. Dillon & J.W. Pellegrino

(Eds.), Testing: theoretical and applied issues. New York, NY:

Freeman.

Kyllonen, P.C. (1985). Theory-based cognitive assessment (AFHRL-TP-85-30).

Brooks Air Force Base, TX: Air Force Human Resources Laboratory.

Melton, A.W., Ed. (1947). 8pparatus tests. Washington, DC: U.S.

Government Printing Office (AAF Aviation Psychology Program Research

Report No. 4).

Messick, S., & Jungblut, A. (1981). Time and method in coaching for the SAT.

LusidggiaLkuligin, 89, 191-216.

47



www.manaraa.com

44
Miller, G.A. (1956). The magical number seven, plus or minus two: some

limits on our capacity for processing information. Psychological

Review. 63:81-97.

Peterson, N.G., Ed. (1987). Development and field test of the trial battery

for Project A (Technical Report 739). Alexandria, VA: U.S. Army

Research Institute.

Peterson, N.G., Hough, L.M., Dunnette, M.D., Rosse, R.L., Houston, J.S.,

Toquam, J.L., & Wing, H. (1990). Project A: specification of the

predictor domain and development of new selection/classification tests.

Personnel Psychology 43, 247-276.

Reynolds, B. (1952). The effect of learning on the predictability of

psychomotor performance. Journal of Experimental Psychology, 43,

341-348.

Schmidt, F.L., Hunter, J.E., & Pearlman, K. (1981). Task differences as

moderators of aptitude test validity in selection: a red herring.

journal of Applied Psvcholoov 66, 166-185.

Steiger, J.H. (1980). Tests for comparing elements of a correlation matrix.

Einhaglialigllitin, 87, 245-251.

Wing, H. (1980). Practice effects with traditional test items. Applied

Esichgasmisallimag_t_t-mn, 4, 141-155.



www.manaraa.com

Table 1. Number of trials and total length of time for the 10 Project-A,

computer-administered tests.

Test

Simple Reaction Time

Number of Total
Trials Time (mins)

10 2

Choice Reaction Time 30 3

Memory Test 36 7

Target Tracking 1 18 8

Perceptual Speed & Accuracy 36 6

,

Target Tracking 2 18 7

Number Memory

Cannon Shoot

Target Identification

Target Shoot

28 10

36 7

36

30

4

5

49
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Table 2. Comparison of Army and Hershey results with the Project-A

computer-administered tests.'

IL.

Army/ Relia- Temporal

Simple Reaction Army
2

31.84 14.82 .88 .23
(mean dec. time) Hershey 29.38 4.94 .88 .50

Choice Reaction Army 40.83 9.77 .97 .69
(mean dec. time) Hershey 36.54 6.48 .97 .77

Memory Army 87.72 24.03 .96 .66
(mean dec. time) Hershey 70.98 17.43 .97 .69

Target Tracking 1 Army 2.98 0.49 .98 .74
(mean ln dist. + 1) Hershey 2.77 0.43 .98 .87

Perceptual S & A Army 236.91 63.38 .94 .63
(mean dec. time) Hershey 202.42 47.10 .95 .73

Target Tracking 2 Army 3.70 0.51 .98 .85
(mean ln dist. + 1) Hershey 3.45 0.52 .98 .91

Number Memory Army 160.70 42.63 .88 .62
(final resp: time mean) Hershey 118.39 27.89 .91 .69

Cannon Shoot Army 43.94 9.57 .65 .52
(mean abs. time disc.) Hershey 43.80 8.52 .51 .53

Target ID Army 193.65 63.13 .97 .78
(mean dec. time) Hershey 163.84 45.08 .95 .71

Target Shoot Army 2.17 0.24 .74 .37
(mean ln dist. + 1) Hershey 2.14 0.20 .71 .70

1 All times are in hundredths of a second. Logs are natural logs.

2 Simple Reaction in the Army battery has 15 trials. Number of trials in

the remaining tests are the same in the Army as in the Hershey battery

The Army retest results are based on overlapping samples of 468 to 487

subjects.
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Table 3. Means and standard deviation on Memory at test and retest, broken

down by subset and sample. Individual scores are averages of all 12 trials

in a subset.

A Test I 152.1 581.3 .261

3 192.7 749.3 .257

5 203.3 806.0 .252

Retest 1 147.2 575.7 .256

3 151.0 708.1 .213

5 193.8 802.5 .241

B Test 1 154.2 607.2 .254

3 188.3 781.3 .241

5 234.3 869.5 .269

Retest 1 145.3 608.4 .239

3 181.1 758.7 .239

5 183.2 835.2 .219

-
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Table 4. Intertrial correlations for Perceptual Speed and Accuracy in Sample

A, test session, averaged in blocks of four trials.

Trials

13- 17- 21- 25- 29- 33-
4

1-4

5-8

9-12

13-16

17-20

21-24

25-28

29-32

33-36

(.39) .34

(.54)

.32

.40

(.43)

.23

.45

.42

(.54)

.21

.34

.39

.44

(.45)

.24

.40

.42

.38

.41

(.41)

.18

.32

.34

.43

.41

.38

(.43)

.22

.35

.39

.41

.48

.42

.45

(.50)

.17

.31

.28

.31

.34

.30

.38

.37

(.35)

52
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Table 5. Hypothetical correlations among seven trials of practice, together

with the average correlation (F;) and reliability (Ri) as calculated by

the Spearman-Brown formula up to a given trial.

Trial
Trial 1 2 3 4 5 6

1 .80 .65 .50 .35 .20 .05

2
.80 .65 .50 .35 .20

3
.80 .65 .50 .35

4
.80 .65 .50

5
.80 .65

6
.80

7

.80 .75 .70 .65 .60 .55

.800 .889 .900 .903 .902 .900 .895
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Table 6. Reliability results for the ten Project-A computer-administered

tests, using pooled averages (7) and weighted regression (Sample A).

Test

Simple Reaction

Choice Reaction

Memory

Target Tracking 1

Perceptual S & A

Target Tracking 2

Number Memory

Cannon Shoot

Target ID

Target Shoot

No. of R
i
*

3
ttr Qra

10 - 14.42 14.8 .874

30 - 1.05 195.3 .988

36 - 1.16 159.4 .977

18 - 2.46 100.3 .992

36 + 0.16 none 1.000

18 + 1.69 none 1.000

28 - 1.21 96.2 .921

36 - 1.09 29.9 .510

36 - 0.50 310.9 .987

30 - 1.82 33.8 .704
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Table 7. Stability results for the ten Project A computer-administered tests

(Sample A).

No. of Slope x 10
3

i*

R
i
*

or 1

Simple Reaction 10 -17.2
1

+7.5 24.3 .566

Choice Reaction 30 - 0.9 -0.4 45.7 .775

Memory 36 - 0.5 +4.1 none 1.000

Target Tracking 1 18 - 0.8 +0.7 none 1.000

Perceptual S & A 36 + 1.7 +2.4 none 1.000

Target Tracking 2 18 - 0.2 +0.0 none indet.
2

Number Memory 28 - 2.8 -1.6 31.1 .670

Cannon Shoot 36 - 0.5 +1.1 43.8 .583

Target ID 36 - 0.0 +4.0 none 1.000

Target Shoot 30 + 1.8 +2.9 48.7 .762

1 b
2
indicates slope for the pooled correlations at retest. For the

corresponding slope at test, see Table 6. c ifidicates slope for the

covariance ratio.

2 The test regression line reaches unity while stability is still rising.

Hence, any "final" stability is speculative and is best put down as

"indeterminate."
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Table 8. Optimal trial numbers (i*) for reliability and stability in Samples

A and B.

Reliability Stability

Test Sample A Sample 8 Sample_A Samoll B

Simple Reaction 14.8 133.9 24.3 26.1

Choice Reaction 195.3 473.6 45.7 15.2

Memory 159.4 89.0 none none

Target Tracking 1 100.3 81.1 none none

Perceptual S & A none 164.9 none 37.8

Target Tracking 2 none none indet. none

Number Memory 96.2 none 31.1 19.1

Cannon Shoot 22.9 64.8 43.8 74.7

Target ID 310.9 304.1 none 60.4

Target Shoot 33.8 45.4 48.7 58.1
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Table 9. Optimal averages for the Project-A tests in predicting performance

in the first retest session on Anti-Aircraft (Sample A).

No. of
Optimal

Average
Predictive
Validity

t_ Os II 1

Simple Reaction 10 1 6 .299 .251 .048 1.47 <.08

Choice Reaction 30 28 30 .162 .117 .045 0.84 n.s.

Memory 36 6 19 .291 .237 .054 2.06 <.02

Perceptual S & A 36 1 9 .222 .107 .115 1.52 <.07

Number Memory 28 4 16 .406 .333 .073 2.05 <.03

Target ID 36 1 5 .306 .196 .110 1.94 <.03

5 7
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Table 10. Cross-validation results for the six tests with optimal averages

and their best linear composite (Sample B)

Composite

OD Conv.

Simple Reaction .211 .251 -.040

Choice Reaction .424 .372 +.052

Memory .347 .349 -.002

Perceptual S & A .230 .174 +.056

Number Memory .296 .210 +.086

Target ID .298 .314 -.016

Best Composite .393 .356 +.037

S
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Table 11. Subset analysis for Perceptual S & A in two independent samples of

102 subjects each. Each subset is represented by the average of all 12

trials in the subset.

Result__

Sample

A B

Predictive validity:

Subset 2 .231 .267

Subset 5 .177 .225

Subset 9 .055 .101

Temporal stability:

Subset 2 .590 .694

Subset 5 .633 .612

Subset 9 .724 .609

59
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Table 12. Subset analysis for Cannon Shoot in two independent samples of 102

subjects each. Each subset is represented by the average of all 12 trials in

the subset.

Sample

t

Predictive validity:

Easy 12 .263 .243

Average 12 .331 .334

Hard 12 .565 .395

Temporal stability:

Easy 12 .295 .160

Average 12 .398 .323

Hard 12 .444 .572

..

GO
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Figure 1. Mean performance at test and retest on the two tracking tests

(Sample A).
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Figure 2. Mean performance at test and retest on Memory, by subset

(Sample A).
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Figure 4. Pooled correlations (657/7EF) and SPearman-Brown reliability up to

trial i for Simple Reaction in Sample A. The straight line has been

calculated weighting each pooled correlation for the number of

covariances on which it is based.
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Figure 5. Temporal-stability results for Choice Reaction in Sample A.
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Figure 6. Temporal-stability results for Target Shoot in Sample A.
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Figure 7. Temporal-stability results for Choice Reaction in Sample B.
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Figure 10. Validity results for Perceptual Speed and Accuracy in Sample A,

by subset.
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Figure 11. Validity results for Cannon Shoot in Sample A, by subset.
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